

Waste2Watts FCH-JU Project 826234

W2W facts

- 2019-Jan-01 to 2020-Dec-31 / 2 year project
- <u>low cost biogas cleaning</u> for coupling with <u>low cost</u> SOFC to prepare biogas market entry for SOFCs.
- **1.68 M€** funding

Biogas cleaning – WP2

EPFL

2

Testing – WP3

EU POTENTIAL BIOGAS RESOURCES

EU biogas use, potential, scale, technology

Example: biogas from manure (CH)

Messages

- Biogas = underused resource
- often small scale, especially farms
- small scale digesters now offered as 'containers' (6 m long, 33 m³, 1 ton/day waste, ≈10 kWe)
- millions of potential sites
- world market \approx 15 x the EU market
- there is a strong push and competition from bio-methane separation and grid injection; but this is presently limited to >100 m³/h and rather >500 m³/h production

Biogas cleaning / conversion comparison

Messages

- Biogas cleaning is a requirement for <u>all</u> downstream conversion
- Engines (ICE) are robust but emit high SOx, NOx
- SOFC : most efficient and cleanest
- need for low cost cleaning (essentially for sulfur) and low cost SOFC (by high volume production)
- W2W addresses this

Objectives

- Design and engineer a biogas-SOFC CHP system with minimal gas pre-processing, low-cost pollutant removal and optimal thermal integration.
- 2 cleaning approaches and hardware development:

Site size (kWe)	Bio-source	Cleaning requirement	How	PoC in W2W	Where
few kWe to tens kWe	farms; local OFMSW	H_2S , org. S (1000 ppm)	solid sorbents	6 kWe SOFC (BlueGen-II)	СН
>hundreds kWe	large OFMSW; landfill	H ₂ S, org. S (100 ppm) Si (10 ppm)	e.g. cooling, other methods	Cleaning installed on MSW/LF site	IT

- validate cleaning with gas analytics
- Cost projections for high volume production for both the cleaning and SOFC systems.
- Detailed full system model
 - considering <u>feedstock</u>, composition <u>fluctuations</u>, gas <u>dilution</u> and <u>pollutant</u> signatures
 - optimizing thermal integration with bio-CO₂ (dry-dominant reforming) and digester heating, to maximise net electrical efficiency and minimise cost
- Post-project multiplication of developed solutions (with Advisory Board)

Work plan

EPFL

Gas cleaning starting point

	Pollutant to remove	Agro-waste	OFMSW	LFG	S-o-A cleaning	SOFC/ reformer tolerance
1	H ₂ S org. sulfur (COS, CS ₂ , mercaptans)	H ₂ S: 1000s ppm org. sulfur: several ppm	H ₂ S: 100s ppm org. sulfur: several ppm	H ₂ S: 100s ppm	in-situ biological/ chemical + chem. wet/oxidative sorption + deep dry solid sorption	1 ppm
2	Siloxanes D4, D5,	undetected	up to 0.1 ppm	0.4 – 23 ppm Si	Dry cold solid sorption	0.01 ppm
3	Halogens (X)	0.2-1.4 ppm HCl 0.1 ppm halo-C	0.2-1.6 ppm HCl 1 ppm halocarbons	11-20 ppm HCl 6- 14 ppm halo-C	(no strict SOFC limit; co-adsorbed with S, (Si))	20 ppm
4	Other VOC (linear HC, aromatics)	1-3 ppm	1-50 ppm	100s ppm	(no strict SOFC limit; co-adsorbed with S, (Si))	1000s ppm

Key questions: Can S be removed cheap enough down to **1 ppm** or better?

How important is **organic sulphur**?

What can be the **impact of X** / **VOC on S(Si)-cleaning** efficiency (matrix, roll-up)

Can Si be removed completely?

KoM W2W 2019-Jan-16 Overview - Confidential

Cleaning thresholds: other technologies

Trace compound	Grid injection quality	Gas vehicle quality	ICE	μ-Turb.	SOFC (SP)
H ₂ S	5 mg/m^3	5 mg/m^3	<150 ppm <2000 capable	<10000 ppm	1 ppm
Organic S	(=3.3 ppm)	(=3.3 ppm)			1 ppm
Siloxanes (total Si)	1 mg/m ³ (=800 ppb) (boiler limit: 0.1 mg/m ³)	0.1 mg/m ³ (=80 ppb)	30 ppb 10-20 mg/m ³	<10 ppb	10 ppb
Cl/F	1 mg/m ³ Cl (0.6 ppm) 10 mg/m ³ F (12 ppm)		60-490 ppm	200 ppm	10 ppm
Linear HC		2°C UC downoint			0.5%
Aromatics		-2 C HC dewpoint			0.5%
H ₂ content	2 mol%	2 mol% (limit=steel tank)	10%	>5%	high
O ₂ content	0.001 to 1 mol%	1			<15% POX
СО	0.1 mol%				high
NH ₃ , amine	3-10 mg/m ³ (4-13 ppm)	10 mg/m ³	50-100 mg/m ³		no limit

<u>Key questions:</u> Could the SOFC (and reformer) tolerate **3 ppm S**?

Could the reformer tolerate 80 ppb Si?

- Agricultural bio-waste, particularly crops residues, represent the most important unexploited bio-waste resource. 0.925 PWh/y at EU level, ~0.2 PWh/y in France, ~0.1 PWh/y in Germany, ~0.05 PWh/y in Italy.
- OFMSW currently treated by composting processes would be suitable for biogas production and valorisation in SOFC. 6.3 TWh/y in CH + D + F + IT.
- The potential of bio-waste able to run very small scale SOFC (5 kWe) is low compared to other scales (37 TWh, CH/D/F/IT). The deployment potential for 20-30 kWe scale SOFC is more important (153 TWh, CH/D/F/IT). These two scales presently lack a biogas valorisation technology adapted to their size.
- The potential of bio-waste able to run larger scale SOFC (>50 kWe incl. multi-100 kWe) is also significant (160 TWh, CH/D/F/IT); however this competes with other valorisation technologies currently available and largely implemented (ICE).

Gas cleaning recommendations–WP2

- High site-to-site variability → sampling campaign(s) should be on-site before SOFC installation
- High temporal variability per site \rightarrow gas cleaning should be oversized for SOFC protection
- The more difficult compounds are not the most abundant.
 - $-300 \text{ ppm}_{v} \text{ H}_{2}\text{S}$ is removed quite easily; 1 ppm_v DMS is not.
 - if SOFC can tolerate ~5 ppm_v sulfur, the gas cleaning would be much easier/cheaper
- H₂S is often measured online and available.
 - Sizing cleaning units for H_2S should look at a 1-year average H_2S concentration.
- To come up with a standardized cleaning solution, sorbent tests focus on the worst case: difficult compounds (H₂S, DMS, COS, CH₃S) in difficult matrix conditions (+VOC, Si).
- 6 commercial sorbents have been selected and are under test campaigns

Cell test results (WP3)

%vol	H_2	CH ₄	CO	CO_2	H ₂ O
Dry ref. internal	0	25	0	75	0
Dry ref. external	23	0	43.5	23	10.5
Methane ref. int.	0	33	0	22	45
Methane ref. ext.	53	0	26	8	13

EPFL

Acknowledgement:

This project has received funding from the Fuel Cells and Hydrogen Joint Undertaking under grant agreement No 826234.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

