

SmartCHP® Cogenerating a renewable future

Bert van de Beld

BioCogen 2030 Webinar June 9, 2020

SmartCHP®: aim and impact

- The EU research project SmartCHP will develop a novel, flexible small scale cogeneration unit to produce heat and electricity from sustainable biomass.
- The main technical novelty is the use of fast pyrolysis bio-oil from lignocellulosic biomass in a converted diesel engine.
- This will help boost the use of renewables in the electricity and heating & cooling sectors, contributing to the 2030 climate and energy targets.

With a market potential of €4 billion, and an estimated 85 to 95% less GHG emissions compared to fossil fuels, the installation of the SmartCHP technology in Europe can bring new jobs, more renewables and help mitigate climate change.

SmartCHP® process From Fields...

Non-food biomass

Three non-food biomasses will be considered for the SmartCHP system:

- Agricultural residues,
- Forestry residues and
- Organic waste

Fast pyrolysis bio-oil

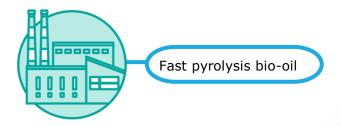
Pyrolysis plant

The biomass will be converted into bio-oil through fast pyrolysis

SmartCHP System

The fast pyrolysis bio-oil will be fed into a modified diesel engine and, depending on heat demand, into a flue gas boiler. A smart control unit will be connected to the SmartCHP system.

Flue gas boiler

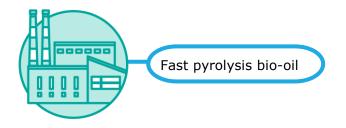

Modified diesel engine

This design makes the **system** fully responsive to changes in heat and power demand, and enables it to adapt to fluctuating renewable sources, like wind and solar

SMART CONTROL UNIT

Fast pyrolysis

- Thermal cracking/depolymerisation of organic material in absence of oxygen
- Main product: liquid bio-oil (FPBO)
- Other products: gas and char
- Minerals recovered at low temperature



Empyro fast pyrolysis plant (25 MW_{th}) in the Netherlands

Fast pyrolysis Process

- Technology is maturing
- © Commercial plants in Netherlands & Finland, plant in Sweden under construction
- European production capacity (2021) > 100 million liters annually

Fast Pyrolysis Bio-Oil (FPBO)

© FPBO is not really an oil.....

Property	FPBO	Diesel	Unit
Water content	25	~ 0	wt%
Density	1,170	840	kg/m³
Heating Value	16	42	MJ/kg
рН	2.8	-	-
Viscosity (40 °C)	20 - 100	2 - 4.5	cSt
Cetane Number	0 - 20	45 - 55	-

Fast Pyrolysis Bio-Oil (FPBO)

© FPBO is available & sustainable, but use of FPBO in standard diesel engine is a challenge......

SmartCHP® process From Fields...

Non-food biomass

Three non-food biomasses will be considered for the SmartCHP system:

- Agricultural residues,
- Forestry residues and
- Organic waste

Fast pyrolysis bio-oil

Pyrolysis plant

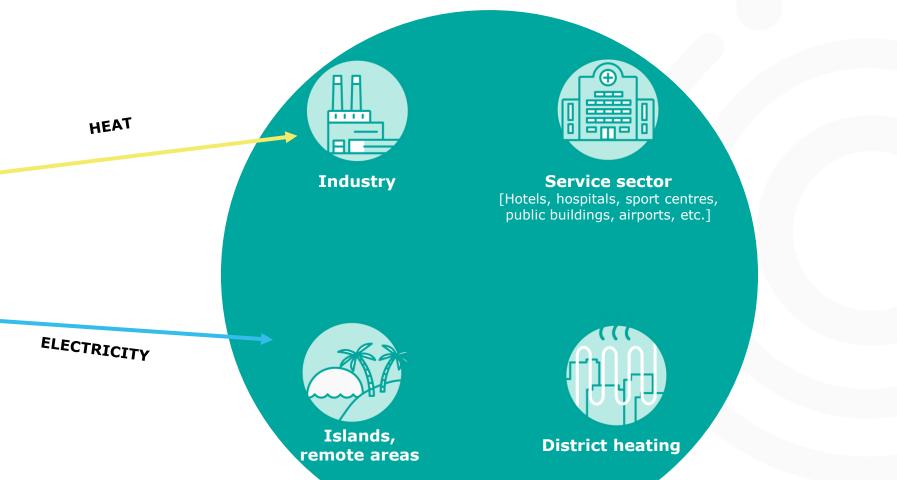
The biomass will be converted into bio-oil through fast pyrolysis

SmartCHP System

The fast pyrolysis bio-oil will be fed into a modified diesel engine and, depending on heat demand, into a flue gas boiler. A smart control unit will be connected to the SmartCHP system.

Flue gas boiler

Modified diesel engine



This design makes the **system** fully responsive to changes in heat and power demand, and enables it to adapt to fluctuating renewable sources, like wind and solar

SMART CONTROL UNIT

Future users of the SmartCHP® system

...To buildings

SmartCHP® Benefits

More sustainable biomass

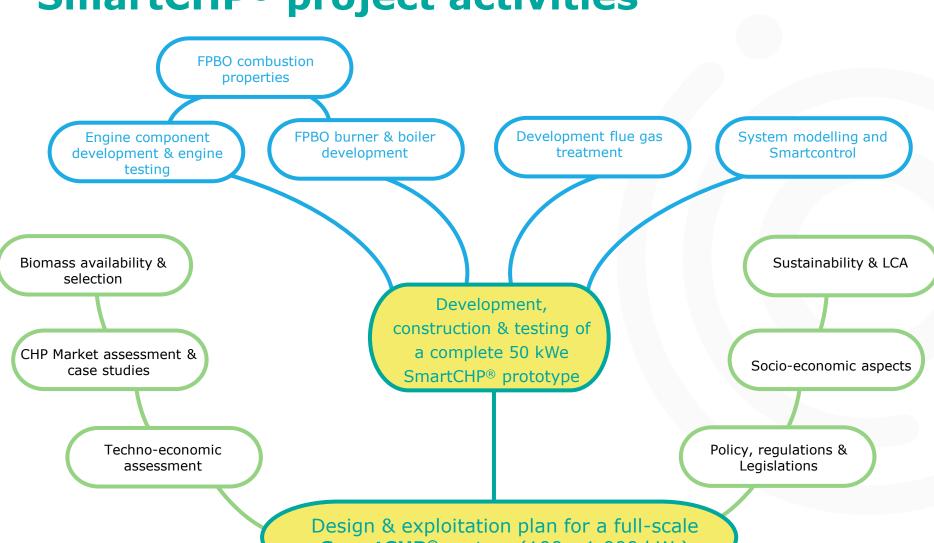
SmartCHP runs on **fast pyrolysis bio-oil** coming from agroforestry residues and organic waste, diversifying the supply of bioenergy for combined heat and power units.

More efficiency

Due to its **extraordinarily high flexibility**, the system rapidly adjusts the fuel load and produce more electricity or more heat according to changes in demand.

(Even) more renewables

Thanks to its flexibility, SmartCHP is ideally suited to use in combination with **fluctuating renewables.**



Less greenhouse gas emissions

The use of SmartCHP for heating and electricity can save between 85 and 95% greenhouse gas emissions compared to fossil fuels.

SmartCHP® project activities

SmartCHP® system (100 - 1,000 kW_e)

Project Partners and overview

 SmartCHP brings together European industrial companies, universities and innovation experts, and is coordinated by BTG Biomass Technology Group BV.

6 Countries

48 Months since June 2019

4 m. euros

Thank you!

Bert van de Beld BTG Biomass Technology Group BV vandebeld@btgworld.com Tel. +31 53 486 1186 www.btgworld.com

