

Possible application and commercial use of the BLAZE concept: Gasification-Fuel Cell CHP plant

Nicola Rovelli

BIOCOGEN 2030 Webinar 7th December 2021 http://www.blazeproject.eu/

- BLAZE CHP concept (Technology)
- Expected application BLAZE Objectives
- Biomass potential and selection
- Preliminary Market perspectives

<u>http://www.blazeproject.eu/</u> This project has received funding from the European Union's Horizon 2020 research and innovation programme under

Grant Agreement No 815284

Biomass Low cost Advanced Zero Emission small-to-medium scale integrated gasifier - fuel cell CHP plant

BLAZE is an EU-funded research project under **Horizon 2020** Program. It involves industry, universities and associations, and is coordinated by Guglielmo Marconi University (USGM)

BIOCOGEN 2030 Webinar 7th December 2021

BLAZE Project Pilot Plant

Innovative technologies:

BLAZE \$

- dual bubbling fluidised bed technology integrated with primary high temperature cleaning & conditioning system
- Secondary high temperature gas cleaning for HCl and H2S removal
- thermal and chemical integration of SOFC (Solid Oxide Fuel Cell)

BIOCOGEN 2030 Webinar 7th December 2021

Feedstock: BIOMASS

- Primary residues from forest
- Agricultural residues
- Secondary residues from wood industries
- Secondary residues of industry utilizing agricultural products
- Municipal organic waste
- Waste from wood
- Digestate from biogas production

http://www.blazeproject.eu/

BLAZE Project Pilot Plant

BLAZE objective

The technology is developed for a CHP capacity range from small (25-100 kWe) to medium (0.1-5 MWe) scale

Parameter	Current	BLAZE				
Overall efficiency	≈ 65%	≈ 90%				
electrical efficiency	≈ 25%	≈ 50%				
investment cost	≈ 10,000 €/kWe	≈ 4,000 €/kWe				
operating cost	≈ 0.10 €/kWhe	≈ 0.05 €/kWhe				
electricity production cost	≈ 0.20 €/kWh	≈ 0.10 €/kWh				
Negligible gaseous and particulate matter emissions						

TASK 2.1 - Determination of the actual potential of residual biomass feedstocks Datasets and the elaborated results provided by the S2Biom project were used (www.s2biom.eu)

The biomass has been divided in 7 categories:

- Primary residues from forest
 Agriculturas residues
 Secondary residues from wood industries
 Secondary residues of industry utilising agricultural products
 Municipal waste
 Waste from wood
- Digestate from Biogas production

The total biomass potential availability is equal to 678,878 Kton/year (dry mass basis).

BIOCOGEN 2030 Webinar 7th December 2021

TASK 2.1 - Determination of the actual potential of residual biomass feedstocks Each category has been furtherly divided into different biomass type:

- Rice straw
- Cereals straw
- Oil seed rape straw
- Maize stover
- Sugarbeet leaves
- Sunflower straw
- Residues from vineyards
- Residues from fruit tree plantations
- Residues from olives tree plantations
- Residues from citrus tree plantations

Example: agricultural residues divided per biomass type (Kton/year on dry mass basis)

BIOCOGEN 2030 Webinar 7th December 2021

TASK 2.1 - Determination of the actual potential of residual biomass feedstocks

Total biomass availability and map distribution in EU28 (kton/year)

BIOCOGEN 2030 Webinar 7th December 2021

bina

TASK 2.1 - Determination of the actual potential of residual biomass feedstocks

It was considered theoretical potential for applying BLAZE technology as 100% fuel switch to bio-fuels in existing CHP systems – in district heating (DH) as well as in industry.

(Projected) Heat demand from bio-energy CHP and DH in 2030 is equal to 17.664 ktoe or 205.432 GWhth. (According to "European report on potential of BIO-ENERGY CHP in EU27") to be updated with latest report

Figures (projections)	2010	2020	2030
Final heat demand from CHP and DH (PRIMES, IEA, UBA), ktoe	56.233	69.056	74.465
(Projected) heat demand from bio-energy CHP and DH (after score card), ktoe	10.967	14.015	17.664
Bio-energy penetration rate in CHP markets (2009: EEA, Eurostat)	19,5% (2009)	20,3%	23,7%
Biomass availability, share heating (sust., cost-eff.), final energy (Biom. Futures), ktoe		129.756	117.868

Bio-energy CHP potential analysis EU-27

BIOCOGEN 2030 Webinar 7th December 2021

http://www.blazeproject.eu/

TASK 2.1 - Determination of the actual potential of residual biomass feedstocks

Assuming Blaze technology thermal conversion efficiency equal to 40% and a medium value of 3.500 working hours of the plant we estimated the number of CHP power plants based on BLAZE technology for different capacity range and scale

Horizon 2020 European Union Funding

BIOCOGEN 2030 Webinar 7th December 2021

BIOMASS CONCLUSION MARKET ANALYSIS STARTING POINT

Biomass Potential

Considering the technical and economic aspects (availability and costs), the following biomasses have been selected for testing :

- <u>Agricultural residues</u>: Arundo Donax or similar.
- Primary residues from <u>forest</u>: Sawmill, Wood Chips.
- Secondary residues from <u>wood industry</u>: Sawdust.
- Secondary residues of <u>industry utilizing agricultural</u> <u>products</u>: almond shell or similar.
- <u>Waste from wood</u>: Wood Chips.

TASK 2.2 – Bio-syngas composition and contaminants that affect SOFC operation, and related gasifier parameters and bed materials to reduce SOFC hazardous effects

According to indication coming from Task 2.1 «Biomass supply», the following feedstocks were ultimately considered for characterization:

	Feedstock	CATEGORY	Humidity (%- wt, as received)	LHV MJ/kg	Ash %wt, dry basis	S %wt, dry basis	Cl %wt, dry basis	Ash melting T (DT) (°C)
	Subcoal	Municipal waste	3,20	21,68	15,60	0,10	1,00	1250,00
	Olive pomace pitted	Secondary residues of industry utilising agricultural products	36,30	19,79	5,95	0,06	0,08	1290,00
	Sawmill waste	Primary residues from forest	11,20	18,89	0,41	<0.01	<0.01	1300,00
	Multi-essence wood chips	Waste from wood	24,50	17,88	1,45	0,02	<0,01	1370,00
	Olive Prunings	Secondary residues from wood industries	14,90	17,76	1,55	<0.01	<0.01	1380,00
	Almond shells	Secondary residues of industry utilising agricultural products	10,00	17,68	1,31	<0.01	<0.01	1000,00
	Swarf and sawdust	Secondary residues from wood industries	6,60	17,14	0,43	<0.01	<0.01	>1385
	Wood chips	Primary residues from forest	8,90	16,74	0,54	<0.01	<0.01	>1385
	Corn cobs	Agricultural residues	9,00	16,62	3,04	0,03	0,44	645,00
	Arundo Donax	Agricultural residues	10,10	16,25	3,43	0,11	0,29	1185,00
	1- Wheat Straw (pellets 10 mm)	Agricultural residues	7,60	15,98	9,22	0,05	0,12	1065,00
	2- Wheat Straw (pellets 6 mm)	Agricultural residues	7,60	15,40	13,29	0,08	0,21	1135,00
	Rice husks	Secondary residues of industry utilising agricultural products	5,20	15,19	14,70	0,02	0,03	990,00
BIO	Digestate	Digestate from biogas production	71,20	12,69	25,81	0,97	0,10	1245,00
Web	Black Liquor	Secondary residues from wood industries	20,60	11,20	48,28	0,74	0,12	680,00
	Municipal solid waste	Municipal waste	23,00	10,22	47,01	0,20	0,40	1220,00

BIOMASS CONCLUSION MARKET ANALYSIS STARTING POINT

Biomass Caractherization

- ENEA analysed a wide selection of Biomass residues to find the most suited fuel for a BLAZE type plant.
- With exception made for corn cobs, black liquor and digestate, all the feedstocks analysed (woody or herbaceous) present no special issues with regards to their use as feedstocks in a process of gasification in a BFB reactor.
- The only issue would be the release of relatively high content of S and Cl that could be noxious to any catalytic downstream equipment and to the SOFC unit. However this can be fixed with utilisation of specific chemical solutions.
- These results confirm the high fuel flexibility of BLAZE, thus making it suitable for a wider geographical application. The same study, based on the results of previous

BIOCOGEN 2030 Webinar 7th December 2021

BLAZE # BIOMASS CONCLUSION MARKET ANALYSIS STARTING POINT

General outcomes of BLAZE pilot plant design:

- increased complexity of the system arisen during the project mainly due to high purity of syngas required by SOFC
- Uncertainties related to final commercial cost of SOFC
- Custom made equipment for pilot scale since not available on the market at small scale

These outcomes could lead to an increase of CAPEX and also OPEX that may become critical for small CHP capacity (25-100 kWe).

Hence **BLAZE concept is more likely to be economically viable for medium CHP capacity (0.5-5 MWe)** more focused to **small/medium industries** and **large public/commercial areas, o**ff course in regions where the identified category of biomass is available

THANK YOU!

www.blazeproject.eu @BlazeH2020 info@blazeproject.eu

ENERECO S.p.A. **Nicola Rovelli**

Tel. +39 340 5979624 E-mail: <u>nicola.rovelli@enereco.com</u>

www.enereco.com

BIOCOGEN 2030 Webinar 7th December 2021

http://www.blazeproject.eu/