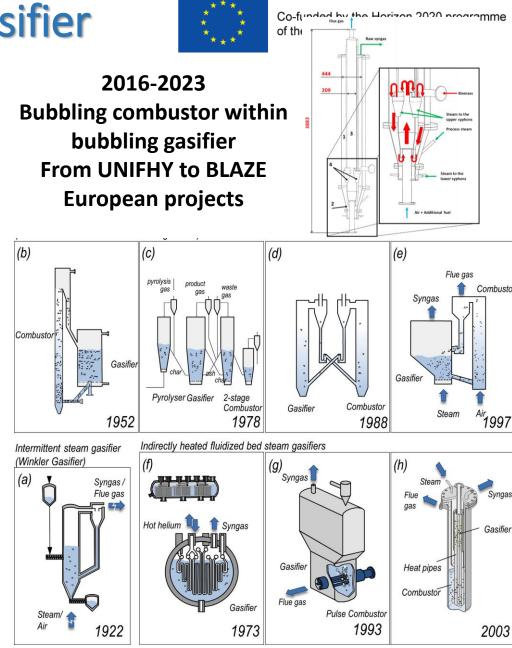


SmartCHP final conference Cogenerating a renewable future

The role of small-scale bio-CHP in Europe's Energy mix


BLAZE & SO-FREE projects BIO COGEN **Enrico Bocci** 2030 **University Guglielmo Marconi (USGM)**

COGENERATING A RENEWABLE FUTURE

SoA of EU28 CHP & Gasifier

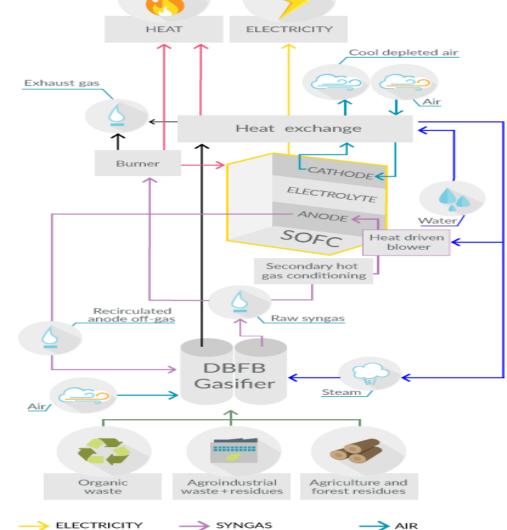
- Total electric installed capacity: 120 GWe (ST 50%, CC 25%, ICE 13%, GT 10%)-> 362 TWh -> ≈<u>3000 Aeh</u> (≈ 11% of EU electricity demand).
- Total thermal installed capacity: 300 GWth -> 775 TWh -> ≈ <u>2500 Aeh</u>
- Overall cogeneration ratio: <u>40%</u> (Electric/Thermal)
- End use: <u>space</u> heating (Zero Energy Buildings (ZEB&ZED) from 31/12/2020) ≈ 50% <u>process</u> heating (emission from industries: e.g. CO2).
- Largest capacity <u>countries</u>: Germany, Italy, Poland and Netherlands.
- Fuel: <u>natural gas</u> ≈ 50%, solid fossil fuels and peat ≈ 20%, oil and oil products 5%, <u>biomass</u> (timber by-products, black liquor, wood, straw, animal waste, OFMSW) attained 20% but there is difficulty in converting different biomass feedstocks in a <u>Reliable and Economic (Efficient and Clean)</u> way especially in small to medium scale.
- Below 1 MWe bio CHP mainly applied are: Biomass <u>combustor</u> coupled to organic rankine cycle (<u>ORC</u>), Biomass fixed bed <u>gasifier</u> coupled to internal combustion engine (<u>ICE</u>)

J. Karla, T. Proll., Steam gasification of biomass in dual fluidized bed gasifiers: A review, Renewable and Sustainable Energy Reviews 98 (2018) 64–78

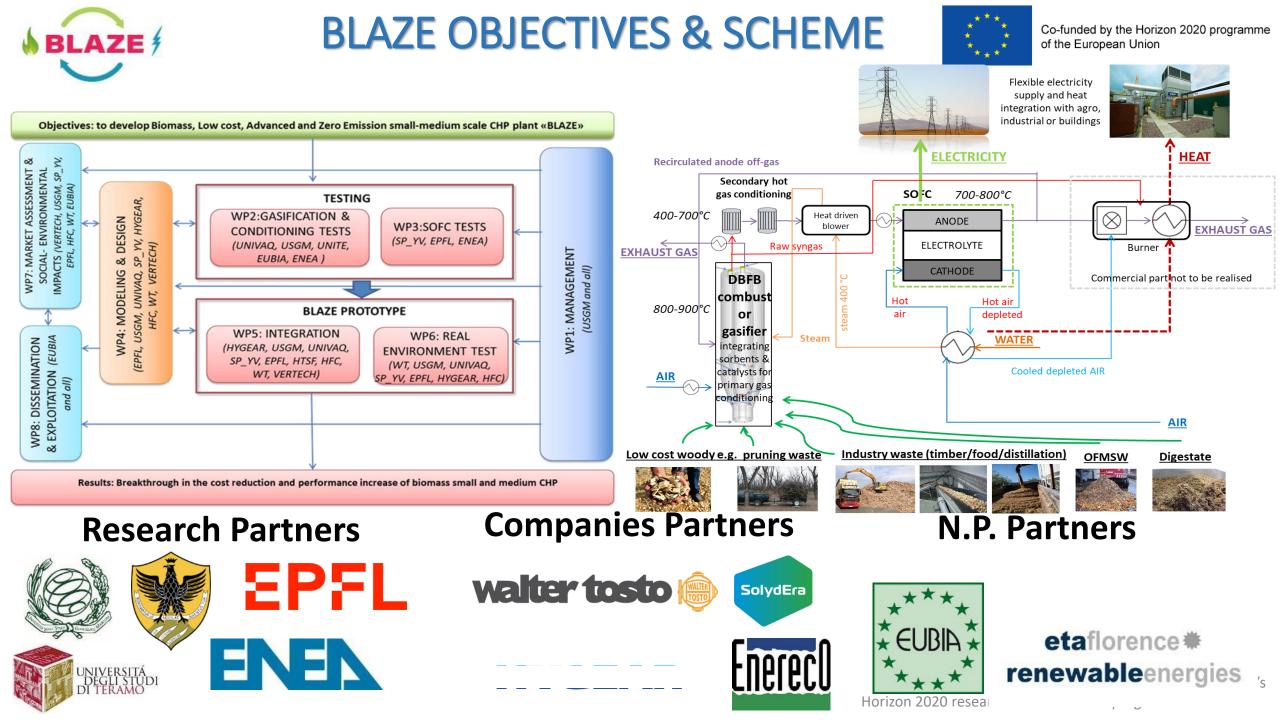
The projects have received funding from the European Union's Horizon 2020 research and innovation programme

DBFB Gasifier Steam Organic Agroindustrial Agriculture and waste + residues forest residues waste ELECTRICITY SYNGAS AIR BIOMASS STEAM/WATER → EXAUST GAS The projects have received funding from the European Union's Horizon 2020 research and innovation programme

Co-funded by the Horizon 2020 programme of the European Union


Biomass Low cost Advanced Zero Emission small-to-medium scale integrated gasifier - fuel cell CHP plant BLAZE

BLAZE 100 (100 kWth biomass DBFBG integrated with 50 kWe SOFC) is compared to a 100 kWth biomass combustor coupled to a 15 kWe ORC and a 100 kWth biomass fixed bed gasifier coupled to a 25 kWe ICE. Buildings heat price: 0.06 €/kWht (AEh: 3000 electrical and 2500 thermal) Industrial heat price: 0.04 €/kWht (AEH: 7500 electrical and thermal). Biomass price: 60 €/ton (similar to the price of high humidity wood chips for BLAZE) <u>100 €/ton</u> (similar to the price of low humidity wood chips for ORC and ICE systems).


BLAZE: overall 90% (versus 65%, target SET-PLAN 75%), electrical 50% (versus 25%, target SET-PLAN >30%), near-zero gaseous and PM emissions , <u>CAPEX below 4,000 €/kWe</u> (actual 10,000 €/kWe), <u>OPEX of ≈ 0.05 €/kWhe</u> (actual 0.10 €/kWhe), electricity production cost 0.10 €/kWh (actual 0.22 €/kWh, SET-PLAN target of 20% cost reduction by 2020, and 50% by

> Smart CHP final conference 27 November 2023

2030).

Olive

Multi⊣

1- Wheat S

WP2: BIOMASS ASSESSMENT, **GASIFICATION AND CONDITIONING**

Co-funded by the Horizon 2020 programme of the European Union

								120,000.00 100,000.00	
Feedstock	CATEGORY	Humidity (%- wt, as received)	LHV MJ/kg	Ash %wt, dry basis	S %wt, dry basis	Cl %wt, dry basis	Ash melting T (DT) (°C)	80,000.00 60,000.00 40,000.00	
Subcoal	Municipal waste	3,20	21,68	15,60	0,10	1,00	1250,00	20,000.00	Lange La
e pomace pitted	Secondary residues of industry utilising agricultural products	36,30	19,79	5,95	0,06	0,08	1290,00	0.00	AUSTRIA BELGIUM BULGARIA CROATIA CYPRUS CZECH REPUBLIC
awmill waste	Primary residues from forest	11,20	18,89	0,41	<0.01	<0.01	1300,00		BUB BU BU
ssence wood chips	Waste from wood	24,50	17,88	1,45	0,02	<0,01	1370,00		ZEC
live Prunings	Secondary residues from wood industries	14,90	17,76	1,55	<0.01	<0.01	1380,00		
lmond shells	Secondary residues of industry utilising agricultural products	10,00	17,68	1,31	<0.01	<0.01	1000,00	CATEG	ORY Itural residues
rf and sawdust	Secondary residues from wood industries	6,60	17,14	0,43	<0.01	<0.01	>1385	Primar	y residues from fo
Wood chips	Primary residues from forest	8,90	16,74	0,54	<0.01	<0.01	>1385		pal waste
Corn cobs	Agricultural residues	9,00	16,62	3,04	0,03	0,44	645,00	Second	lary residues from
rundo Donax	Agricultural residues	10,10	16,25	3,43	0,11	0,29	1185,00	Second	lary residues of in
Straw (pellets 10 mm)	Agricultural residues	7,60	15,98	9,22	0,05	0,12	1065,00	produc	ts
Straw (pellets 6 mm)	Agricultural residues	7,60	15,40	13,29	0,08	0,21	1135,00	Waste	from wood
Rice husks	Secondary residues of industry utilising agricultural	5,20	15,19	14,70	0,02	0,03	990,00	Digesta	ate from biogas pro
	products							CATE	GORY
Digestate	Digestate from biogas production	71,20	12,69	25,81	0,97	0,10	1245,00		te from wood
Black Liquor	Secondary residues from wood industries	20,60	11,20	48,28	0,74	0,12	680,00		cultural residues ary residues froi
cipal solid waste	Municipal waste	23,00	10,22	47,01	0,20	0,40	1220,00	Seco	ndarv residues f

TOTAL AVAILABLE BIOMASS (kTon/year)

000 BELGIUM BELGIUM BELGIUM BULGARIA CROATIA CYPRUS CZECH REPUBLIC CROATIA CROATIA CROATIA CROATIA CROATIA CROATIA FINLAND FRUAN	LUXEMBOURG MALTA NETHERLANDS	POLAND PORTUGAL ROMANIA SLOVAKIA SLOVENIA SPAIN SWEDEN UNITED KINGDOM			
CATEGORY	pote <u>nti</u>	al (Kton dry mass/y)			
Agricultural residues		264986,32			
Primary residues from forest		167641,91			
Municipal waste		89763,53			
Secondary residues from wood industries		87906,47			
Secondary residues of industry utilising agricultural products		29527,11			
Naste from wood	26418,22				
Digestate from biogas production	12634,60				
CATEGORY		cost €/ton			
Waste from wood		15			
Agricultural residues		28			
Primary residues from forest		35			
Secondary residues from wood industries	35				
Secondary residues of industry utilising agri	icultural				
products		55			
Municipal waste		60			
Digestate from biogas production		e Europe 661 Union's			

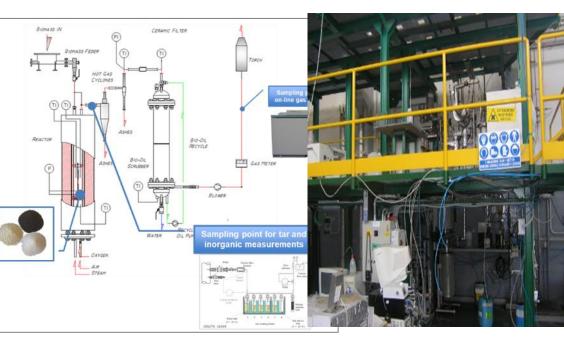
Horizon 2020 research and innovation programme


WP2: BIOMASS ASSESSMENT, **GASIFICATION AND CONDITIONING**

Co-funded by the Horizon 2020 programme of the European Union

and and	and a				%-wt	, dry basis	
		Feedstock	С	Н	N	S	
		ОР	51.8	7.1	2.8	0.06	
Olive pomace	Almond shells	AS	48.8	6.1	0.5	< 0.01	

teele			%-wt	, c	d <mark>ry b</mark> asis		
stock	С	н	Ν		S	Cl	0
	51.8	7.1	2.8		0.06	0.08	32.1
	48.8	6.1	0.5		< 0.01	< 0.01	43.2

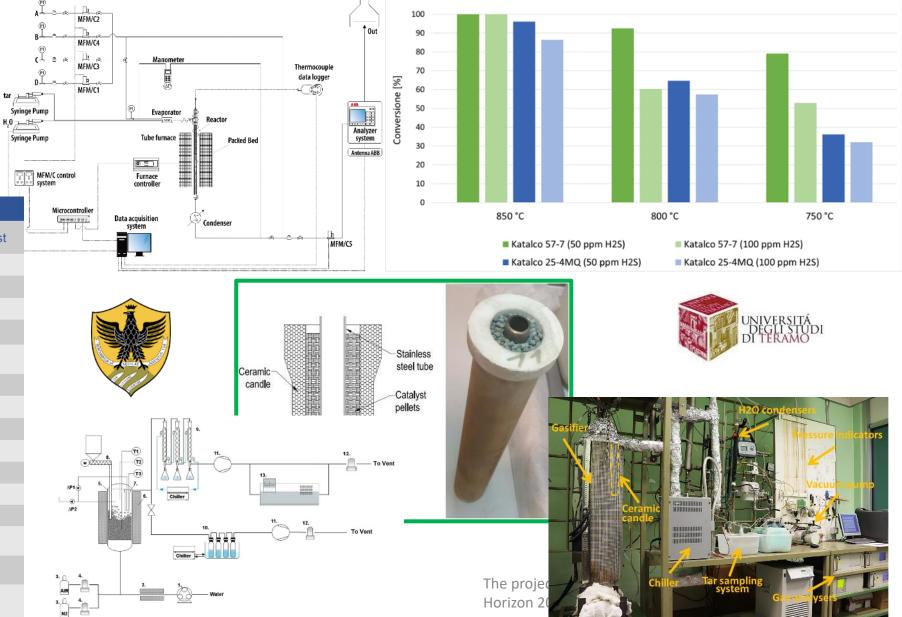


- ➢ Bed material (i.e. olivine, calcined dolomite)
- ➤ In-bed sorbents (i.e. calcined dolomite, Na2CO3, K2CO3)

In had implementation	Observed Effect								
In-bed implementation	Olive Pomace	Almond shells							
Primary additives									
Na_2CO_3 , K_2CO_3 : x 100 stoich.	1- Reduction of HCl content around \approx 10-100 mg/Nm ³ _{dry} vs 510 mg/Nm ³ _{dry} (theoretical value).	1- Reduction of HCl content < 20 mg/Nm $^3_{dry}$ vs 55 mg/Nm $^3_{dry}$ (theoretical value)							
c-Dolomite (0-45 %-wt)1- Appreciable effect on gas composition (H2 enrichment, from 25 %-v up to 35 %-v, N2-free 2- Important effect on Tar content reduction (f2 > 45%-wt on Tot GCMS: 25 g/Nm ³ dry vs 13.7 g/Nm ³ dry; Benzene, Toluene, Naphthalene ≈ 10 mg/Nm ³ dry); 3- H ₂ S content reduced to tens/few mg/Nm ³ dr 320 mg/Nm ³ dry (theoretical value);		1- No appreciable effect on gas composition (H2 content ~ 35 %-v, N2-free); 2- Important effect on Tar content reduction (%- eff: > 50%-wt on Tot GCMS: 28 g/Nm ³ _{dry} vs 10 g/Nm ³ _{dry} ; Benzene, Toluene, Naphthalene \approx 1000s mg/Nm ³ _{dry}) 3- H ₂ S content reduced to tens/few mg/Nm ³ _{dry} vs 27 mg/Nm ³ _{dry} (theoretical value);							
Steam/Biomass (OLV)									
0.5 vs 1.0	1- H ₂ enrichment (H ₂ : 25 → 35 %-v, N2-free basis); 2- limited reduction on light hydroc. content (i.e. CH ₄ + C ₂ H _x); 3- lower effect on the reduction of tar content 25 g/Nm ³ _{dry} (~ 30% based on Tot GCMS);	1- H ₂ enrichment (H ₂ : 35 \rightarrow 45 %, N2-free basis); 2- No effect evidence on light hydroc. content (i.e. CH ₄ + C ₂ H _x); 3- lower effect on the reduction of tar content 28 g/Nm ³ _{dry} vs 19 g/Nm ³ _{dry} (~ 30% based on Tot GCMS);							
Equivalence Ratio									
0.25 vs 0.30	 Minimal effect on gas composition (CO2 %-v increase); Limited effect in the tar content (~ 15-20%-wt on Tot GCMS); 	 Minimal effect on gas composition (CO2 %-v increase); Limited effect in the tar content (~ 15%-wt on Tot GCMS); 							

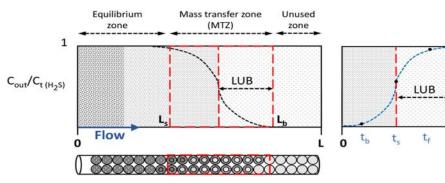
K₂CO₃

The projects have received funding from the European Union's Horizon 2020 research and innovation programme

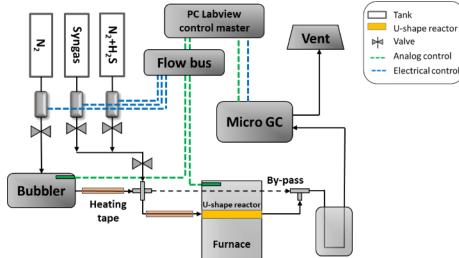

WP2: BIOMASS ASSESSMENT, GASIFICATION AND CONDITIONING

Co-funded by the Horizon 2020 programme of the European Union

Test	#8	#10	#11
Ceramic candle	Partially fill	ed catalyst B	2x Catalyst
Bed material	Olivine	Olivine +	dolomite
Avg Temperature (°C)	848	844	844
Steam/Biomass	0.52	0.50	0.58
GHSV (h ⁻¹)	4492	4227	2324
Gas yield (Nm³ dryN₂free/kg _{bio})	1.84	1.87	1.89
H ₂ O conversion (%)	56.24	54.84	58.24
H₂ (%vol dryN₂free)	55.69	55.06	53.31
CO (%vol dryN₂free)	31.59	31.39	34.73
CO ₂ (%vol dryN ₂ free)	11.05	12.12	11.34
CH₄ (%vol dryN₂free)	1.67	1.44	0.61
LHV (MJ/Nm ³)	9.04	8.85	8.75
H ₂ (NI/min)	10.10	10.17	10.24
Toluene/1-ring (mg/Nm³ dryN₂free)	73/46	N.D./389	N.D./208
Naphthalene/2-ring (mg/Nm³ dryN₂free)	162	85	N.D.
Total Tar (w/o benz) (mg/Nm³ dryN₂free)	342	474	208



WP2: BIOMASS ASSESSMENT, GASIFICATION AND CONDITIONING


Co-funded by the Horizon 2020 programme of the European Union

Gas flow Syngas* Sorbent (g) $0.5-0.25$ T (°C) $450-600$ P (bar) $0.95-1.05$ GHSV (10 ³ h ⁻¹) $25-50$ C_{H_2S} (ppmv) 400 260 BL (cm) $0.8-1.5$ Bed L/D index $1-1.9$ Particle size (mm) $1.5-3.0$ Total flow (NmL min ⁻¹) 305 ± 1	Experimental Conditions	1	Ш				
T (°C) $450-600$ P (bar) $0.95-1.05$ GHSV (10 ³ h ⁻¹) $25-50$ C_{H_2S} (ppmv) 400 260 BL (cm) $0.8-1.5$ Bed L/D index $1-1.9$ Particle size (mm) $1.5-3.0$ Total flow (NmL 305 ± 1	Gas flow	Syng	as*				
P (bar) $0.95-1.05$ GHSV (10 ³ h ⁻¹) $25-50$ C_{H_2S} (ppmv) 400 260 BL (cm) $0.8-1.5$ Bed L/D index $1-1.9$ Particle size (mm) $1.5-3.0$ Total flow (NmL 305 ± 1	Sorbent (g)	0.5–0	0.25				
GHSV (10 ³ h ⁻¹) $25-50$ C_{H_2S} (ppmv) 400 260 BL (cm) $0.8-1.5$ Bed L/D index $1-1.9$ Particle size (mm) $1.5-3.0$ Total flow (NmL 305 ± 1	т (°С)	450-	600				
C_{H_2S} (ppmv) 400 260 BL (cm) $0.8-1.5$ Bed L/D index $1-1.9$ Particle size (mm) $1.5-3.0$ Total flow (NmL 305 ± 1	P (bar)	0.95–1.05					
BL (cm) 0.8–1.5 Bed L/D index 1–1.9 Particle size (mm) 1.5–3.0 Total flow (NmL 305 ± 1	GHSV (10 ³ h ^{−1})	25–50					
Bed L/D index1–1.9Particle size (mm)1.5–3.0Total flow (NmL305 + 1	\mathcal{C}_{H_2S} (ppmv)	400	260				
Particle size (mm)1.5–3.0Total flow (NmL305 + 1	BL (cm)	0.8-	·1.5				
Total flow (NmL 305 + 1	Bed L/D index	1–1.9					
	Particle size (mm)	1.5-	3.0				
		305	±1				

Paper published in Energies journal : E. Ciro, A. Dell'Era, A. Hatunoglu, L. Del Zotto, E. Bocci Kinetic and Thermodynamic Study of the Wet Desulfurization Reaction of ZnO Sorbents at High Temperatures

 ZnO sorbents showed the best performances of absorption capacity of the at 550 °C, achieving a sorption

capacity of 5.4 g per 100 g of sorbent and a breakthrough time of 2.7 h.

- These materials also have been shown acceptable results up to 600 °C.
- A water-gas shift (WGS) and a catalytic reactions was observed on the ZnO performance.
- From thermodynamic analysis, the endothermic features for the deactivation reaction was observed and thermodynamic calculations for enthalpy, entropy, activation energy and diffusion coefficient were calculated.
- The modelling of the bed fixed reactor and subsequent estimations of bed reactor were carried out to sizing the dimensions of a fixed bed reactor.

The projects have received funding from the European Union's Horizon 2020 research and innovation programme

0.9

0.7

0.6

0

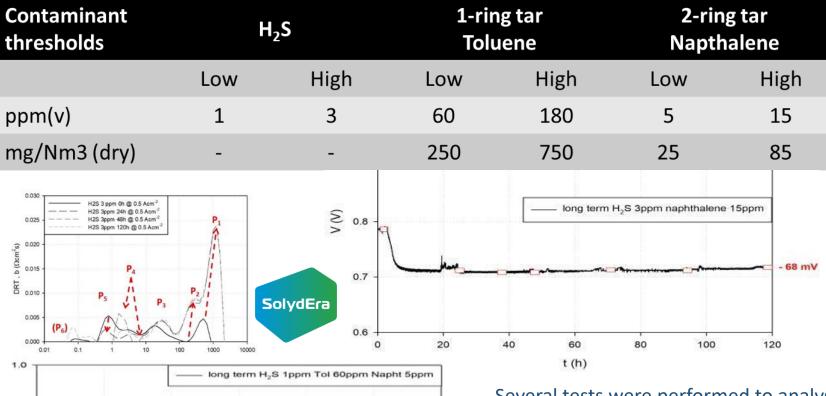
20

40

60

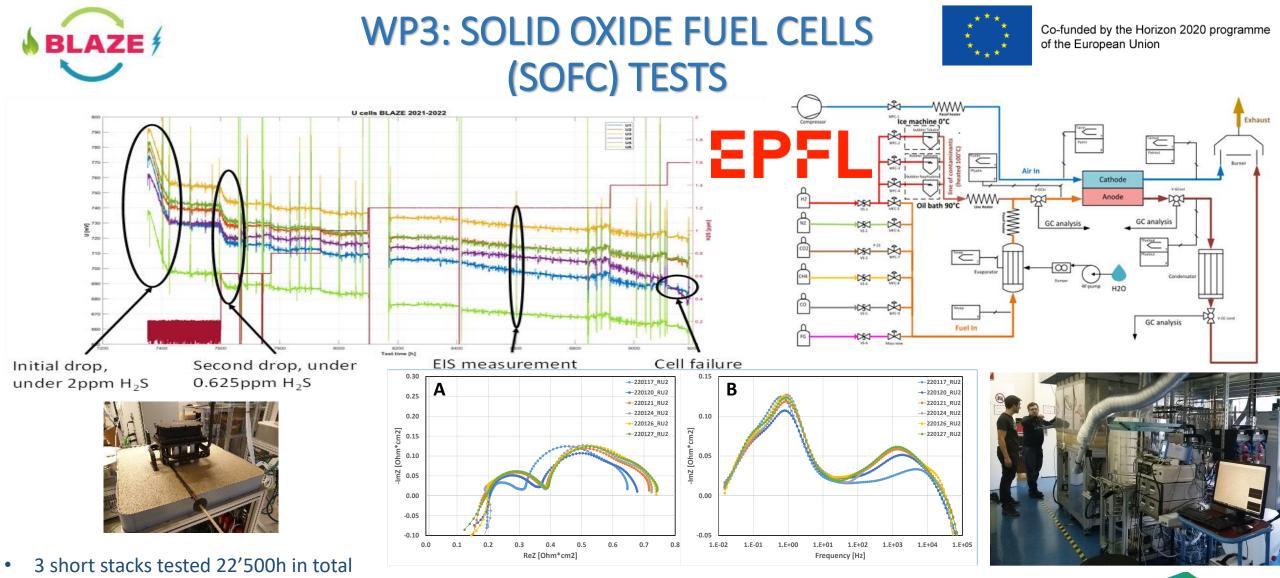
t (h)

80

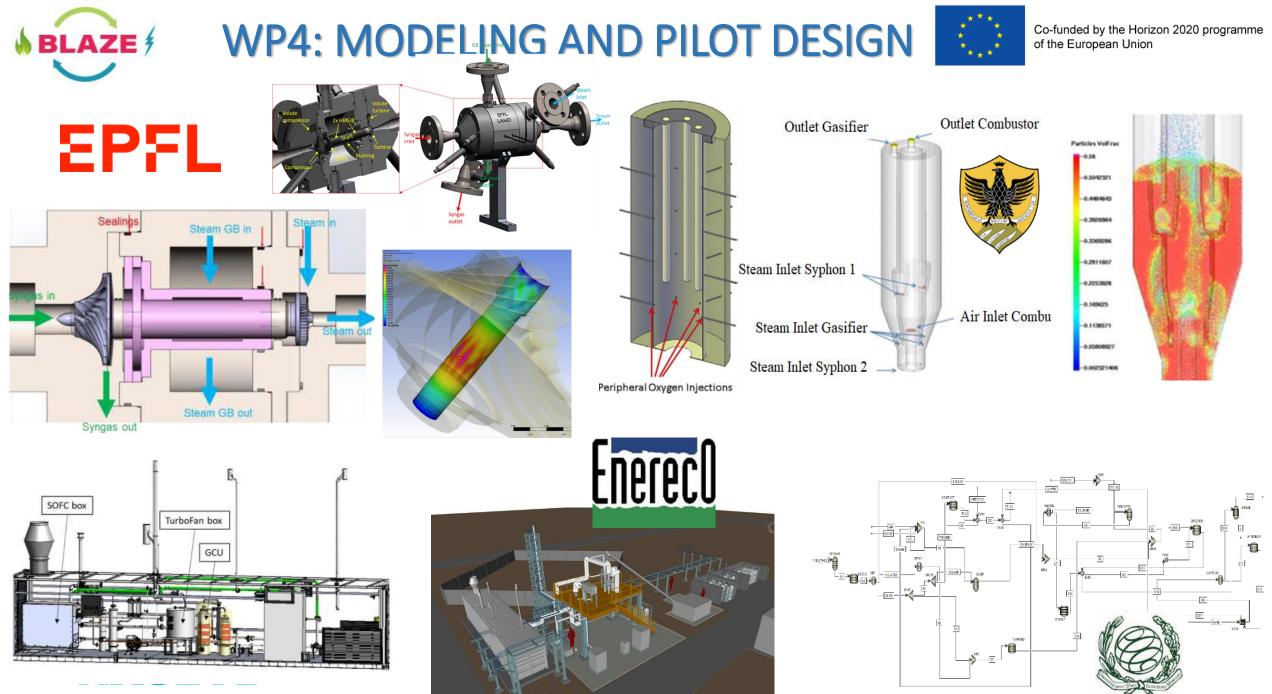

100

\$ 0.8

WP3: SOLID OXIDE FUEL CELLS (SOFC) TESTS


Co-funded by the Horizon 2020 programme of the European Union

120

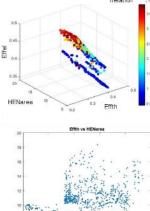

Several tests were performed to analyse single and multi-contaminant impact on syngas-fed SOFC. The multi-contaminant tests generally confirm the results obtained from the single-contaminant (H2S mainly affecting charge transfer; tars affecting R0 and diffusion but also charge transfer). R0 mobility was observed for the tar-laden syngas compositions, possibly due to C-dep which induces a dynamic effect on R0 Tar presence (in smaller concentrations and with cells with higher initial voltage) seem to mitigate the H2S poisoning (possibly due to a concomitant activity of Ni for tar reforming). This is however not observed for all camples being related to El2S/Tarunion's ratio and Tar typology Horizon 2020 research and innovation programme

- 3700 h of impurities exposure Sulfur (DMS): $0.2 \rightarrow 4$ ppm Light tar (Toluene): $20 \rightarrow 400$ ppm Halogen (HCl): $5 \rightarrow 50$ ppm
- EIS under nominal polarization DRT analysis; stable operation in clean syngas (9000h) -3.4 μV/h (-0.4%/kh)
- S deactivates Ni starting from 0.2ppm (30ppb) Affects CT and RWGS 9% voltage drop at 4ppm Co-feed of toluene mitigates S-contamination Partial recovery (logarithmic) 50% in 33h 80% in 250h
- HCl leads to irreversible degradation (-60 μ V/h) for 5-50ppm

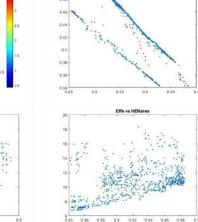
The projects have received funding from the European Union's Horizon 2020 research and innovation programme

SolvdEra

Horizon 2020 research and innovation programme



WP4: MODELING AND PILOT DESIGN



Co-funded by the Horizon 2020 programme of the European Union

0.45

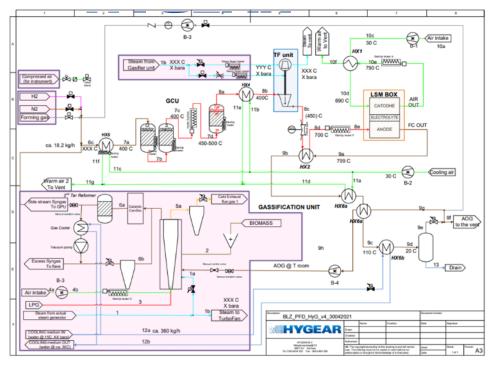
0.4

Effth vs Effe

Name	Description
Case 1	Base case; BLAZE plant without AOG use.
Case 2	AOG recirculation to the gasification chamber.
Case 3	AOG recirculation to the SOFC LSM anode inlet.
Case 4	AOG recirculation to the gasifier combustor without FTU.
Case 5	AOG recirculation to the gasifier combustor with FTU.
Case 6	AOG used in a GT.

Variable / criterion	Distance utopian	Eff _{el}	Eff _{th}	HEN area
FU	0.780	0.800	0.715	0.746
STB	0.333	0.330	0.967	0.330
Tgasif (°C)	782.475	751.173	837.502	839.452
TinSOFC (°C)	690.000	690.391	697.473	690.022
TC2 (°C)	28.705	25.873	26.207	186.869
TH1 (°C)	550.054	745.798	132.408	101.537
TH6S (°C)	321.274	398.596	356.899	221.770
TC1 (°C)	279.412	200.000	236.054	428.615
TH2 (°C)	642.955	550.967	634.334	626.737
ТНЗ (°С)	508.714	756.581	245.333	263.241
Eff _{el}	0.4547	0.4873	0.3443	0.3493
Eff _{th} *	0.3558	0.3052	0.4736	0.4093
Eff _{tot}	0.8105	0.7925	0.8179	0.7587
Area (m²)	9.980	11.543	13.614	6.727
Steam generated (kg/h)	14.606	10.027	29.977	26.360
Cooling water produced (kg/h)	155.826	153.954	190.537	161.233
Steam to gasifier (kg/h)	3.261	3.158	10.696	3.371
LPG (kg/h)	0.173	0.000	0.902	1.196
Recirculation compressor (kW) @ TC2	0.122	0.115	0.153	0.360
Steam needed in the FTU (kg/h) @ TC2	9.63	9.13	12.10	28.05
Steam needed in the FTU (kg/h) @ 200 °C	15.11	14.35	19.05	1

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	
Gross power SOFC (kW)	25	25	25	25	25	25	
Gross power turbine (kW)						8.973	
Air compressor (gasifier) (kW)	0.291	0.363	0.316	0.327	0.226	0.292	
Air compressor (SOFC) (kW)	0.663	0.746	0.611	0.663	0.663	0.663	
AOG compressor (kW)	0	0.098	0.123	0.129	0	1.361 ¹	
Pumps (kW) ²	6.00E-05	3.24E-03	6.12E-04	6.00E-05	6.00E-05	1.00E-03	
Net power (kW)	24.046	23.788	23.947	23.877	24.106	31.656	
CGE	0.73	0.75	0.68	0.68	0.75	0.73	
SOFC efficiency	0.50	0.47	0.50	0.50	0.50	0.50	
Eff _{el}	0.34	0.37	0.39	0.38	0.44	0.45	
Cooling water produced (kg/h)	189.68	213.61	174.52	189.68	189.68	189.68	
Cooling water produced (kW)	9.51	10.72	8.75	9.51	9.51	9.51	
Cold utility (kW)	6.23	8.06	18.75	18.35	4.72	17.41	
Eff _{th}	0.22	0.28	0.45	0.45	0.25	0.38	
Total efficiency (Eff _{el} + Eff _{th})	0.57	0.65	0.83	0.83	0.69	0.84	
FTU							
ΔP (mbar)		250	60		270		
Steam needed (kg/h)		19.85	3.75		10.19/16.50		
Inlet fan T (°C)		200	200		20/200		
Total power needed from turbine (kW)		0.315	0.060		0.162/0.209		


WP5 INTEGRATION

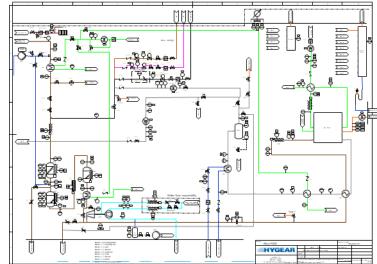
Overall CHP pilot system: Gasification unit + CHP sub-units

TurboFan box

GCU

SOFC box

- Double Bubbling Gasifier/Combustor
- Gas cleaning unit (GCU)
- Turbo-fan/steam driven compressor (TF)
- 25 kWe Large Stack Module (LSM)
- Anode off gas post-processing section
- BoP, PID, HAZID, HAZOP done!

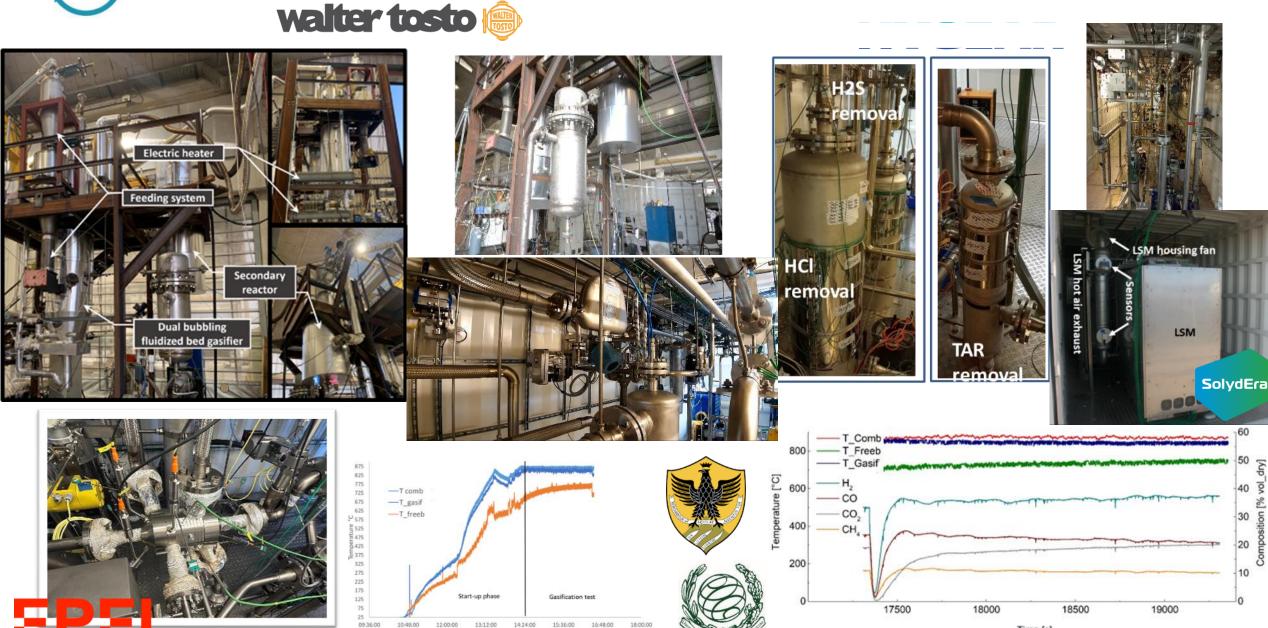

http://www.blazeproject.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 815284

Fuelecn

Co-funded by the Horizon 2020 programme of the European Union

The projects have received funding from the European Union's Horizon 2020 research and innovation programme

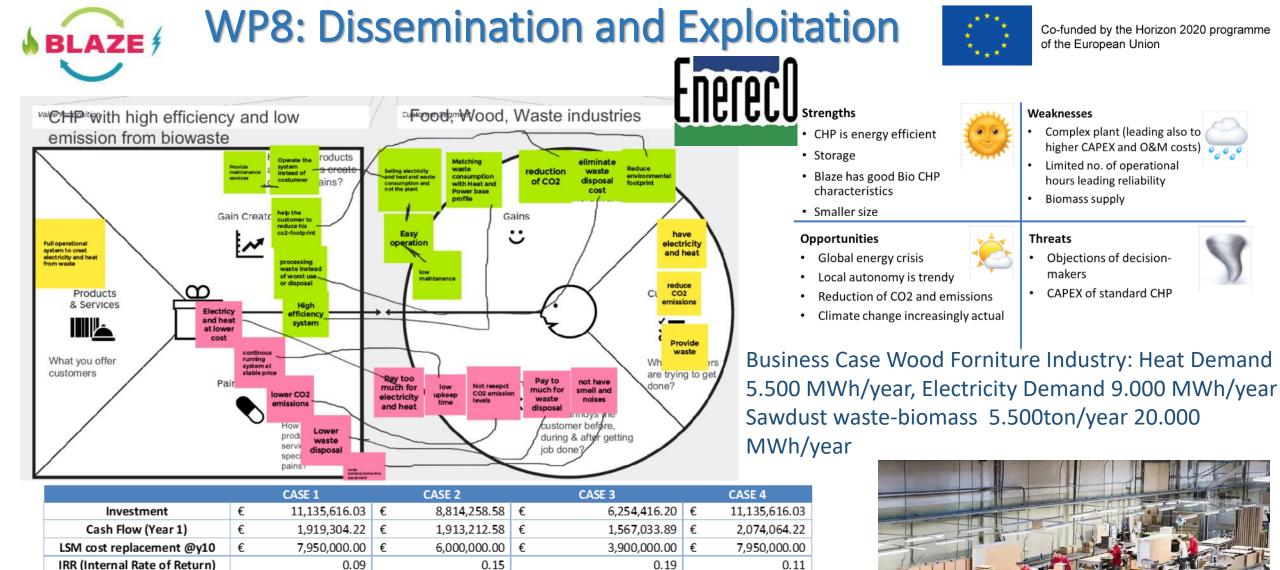


WP6 REAL ENVIRONMENT TEST

Time [s]

Co-funded by the Horizon 2020 programme of the European Union

time (hr)



WP7: TECHNO-ECONOMIC, SOCIAL AND ENVIRONMENTAL ASSESSMENT

Co-funded by the Horizon 2020 programme of the European Union

	CAPEX [10	-1. SHO-	c) C /	APEX 50k unit/year	[10 years]		Unit		onventio electricit		Rough SOFC		tailed OFC	SOFC in future based on	Ideal case for BLAZE
	5% 6%	 Air supply Biomass cleaning & energy 		3%	Air supply				plant		system	Sy	stem	database	
16%	8%	supply Hot BoP box	24%	12%	 Biomass cleaning & energy supply Hot BoP box Stack box 	Climate change impact	kg CO2 eq		0.77		0.32738	0.3	3863	0.32901	0.19498
		EDI treatment			EDI treatment	Ecosystem quality	PDF.m2.y		0.14441	L -	2.41656	-2.4	1444	-2.41358	-2.45441
	62%	Gas conditioning	1%	45%	Gas conditioning	Human health	DALY		1.96E-0	7 2	2.57E-07	2.7	7E-07	2.43E-07	3.49E-07
Gas purification			Gas purification	Water scarcity	m3 world-	eq	0.04115	5	0.01948	-0.0	0355	0.02266	0.01825		
)	Ozone layer	kg CFC-11	eq	1.83E-0	7 5	5.76E-08	6.0	1E-08	5.81E-08	9.33E-09
	SOFC	furture price perdiction				depletion									
14000							25 kW	50 KW	100 kW	500 kW	1 MW	5 MW		lifetime	vith 10 years stack future price+2 years naintanence
10000					PFL				o allocation -				re		
8000						CAPEX / 1 kWh electricity	0.390736	0.270921	0.249180		0.208223	0.195363	0.10	14656	0.104556
	and the second sec					OPEX / 1 kWh electricity		14/141	economic all		4339				0.094361
6000								with	economic an		production	ineration rea	kure		
4000		•••••••••••••••••••••••••••••••••••••••				CAPEX / 1 kWh electricity	0.259105	0.179653	0.165236		0.138076	0.129549	0.06	39333	0.069333
						OPEX / 1 kWh electricity		·	· · · · · ·		5714				0.062573
2000								1.0.0500000			oduction				
0						CAPEX / 1 kWh heat OPEX / 1 kWh heat	0.084629	0.058678	0.053969	0.053969	0.045098	0.042313	0.02	22646	0.022646 0.020437
0	10000	20000 30000 40000	50000 600	000		OPEA/ 1 KWIII DEaL				0.03	1202				0.020437
		Numbers of unit / year													

BLAZE pilot plant 0.31 kg CO2 – eq, 50 % reduction compared with mature electricity generation technology. After reasonable improvement, BLAZE emits 0.19 kg CO2 – eq. (better heat integration, self-produced steam, biofuel instead of LPG, renewable electricity, catalyst production and lifetime). Biomass and maintenance contribute the most in OPEX. Electricity contributes 66% of overall revenues. Economic allocation method is important and necessary to use. BLAZE system has the potential to reach 0.1 Euro/ 1 kWh electricity, 0.04 Euro/ 1 kWh heat (cheaper than the market price), reach BLAZE proposed target. BLAZE shows more competitivity marketplace when the plant size is big, and it can deliver heat and electricity continuously (CHP).
 Smart CHP final conference 27 November 2023

NPV - Net Present Value€20,957,466.77€22,072,590.67€18,701,478.17€23,040,878.45Technology roadmap:Reduce plant and equipment costs, Optimize defining modularstandard size, Cumulate operational manhours for increasing reliability and availability,LSM costs drive the economics (LSM 4.000 €/kWe 5 years lifetime).

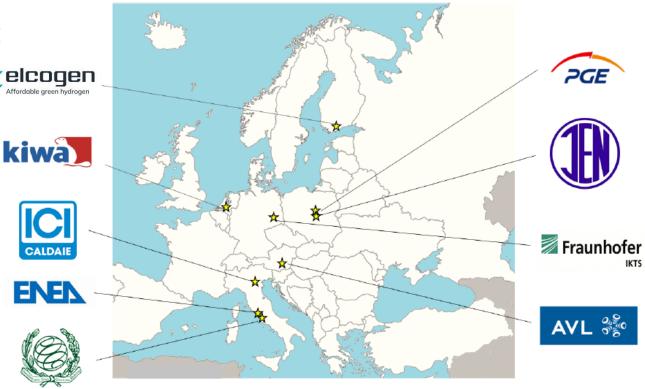
Business Model: ESCO more viable solution for medium scale plants and for industries.

Horizon 2020 research and innovation programme

BLAZE WP8: BLAZE & SmartCHP BioCOGEN2030 and BLAZE final event at EUBCE 2023

Co-funded by the Horizon 2020 programme of the European Union

etaflorence# renewableenergies



Designing for flexible use of hydrogen and natural gas: the SO-FREE project

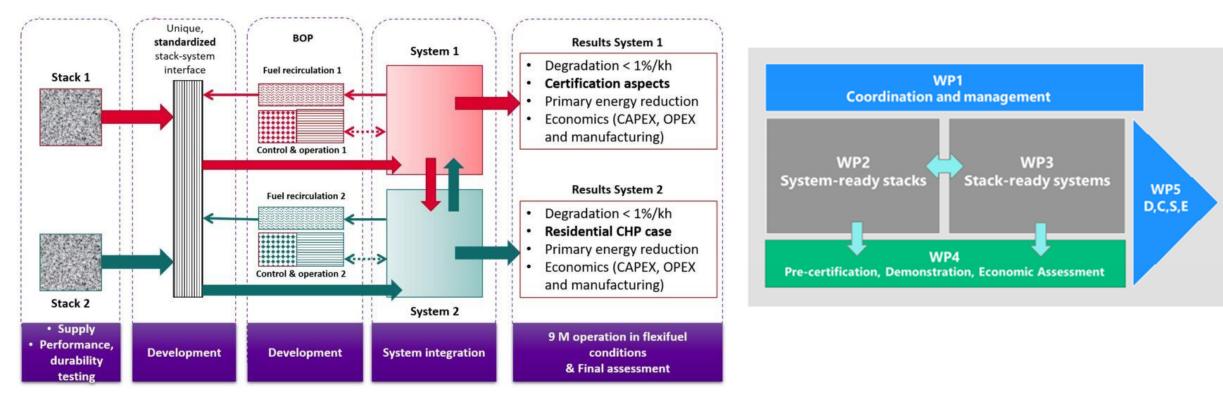
- Demonstration of a fully fuel-flexible, 5 kW CHP system
- Start 1 January 2021. End 30 March 2025. Budget: 2.7M€
- Stacksuppliers: Elcogen (ASC, 650°C), Fraunhofer IKTS (ESC, 850°C)
- CHP System developers: AVL, ICI
- CHP prototypes manufacturer: ICI
- Stacktest labs: ENEA, IEN
- Demosites: KIWA, IEN (>6000 h)
- Pre-certification of the systems: KIWA
- Assessments SOFC-CHP NL, IT, PL, UK markets: PGE, KIWA, USGM, ENEA This project has

Main goals

- Broader Fuel Operation Window
- Pre-certified SOFC-CHP system allowing an operation window from zero to 100% H2 in natural gas and with additions of purified biogas.

- Stack-system Interface Standardization
- Standardization of the stack module system interface, allowing full interchangeability of SOFC stack types within a given SOFC-CHP system, by the International Electrotechnical Commission (IEC) as a new work item proposal (NWIP).

 Two stack system interoperability run for 9 months in order to assess compliance with all applicable certification requirements of a TRL 6 prototype and demonstration in operational environment providing combined heat and power with natural gas with injections of hydrogen at TRL7.



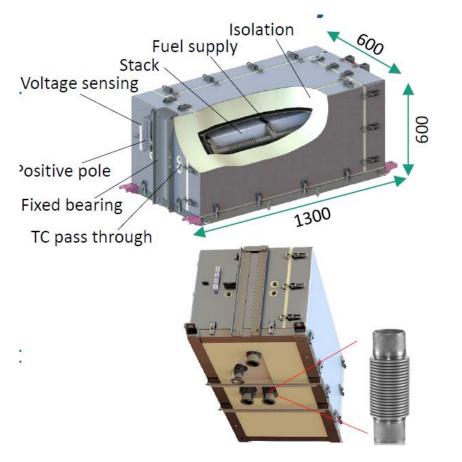
Activities

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 101006667. The JU receives support from the European Union's Horizon 2020 research and innovation programme

and Italy, Austria, Finland, Germany, Poland, Netherlands, United Kingdom

SO-FREE results: stack characterization

- Developed a unique testing interface for validation in 2 labs
- Testing under 100% H2/CH4 & 67:33
- IV curves, Fuel utilization curves, Temperature sensitivity
- ±0,88%average difference between2test labs on all measurements (all < 4%)

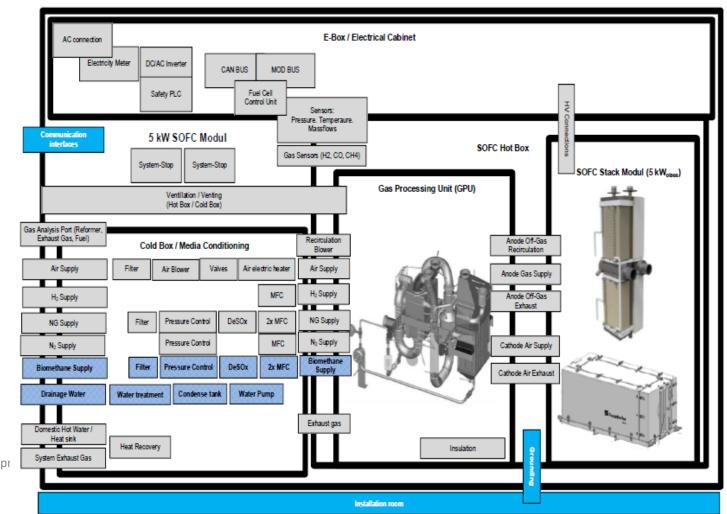


SO-FREE results: stack module-system interface

- Unique module to house both ASC & ESC stack, in flexifuel operation
- Allows quick module replacement during system operation
- Design finalized for SO-FREE

Power connection via terminal blocks

Cluster terminal interface for voltage (package) sensing



SO-FREE results: system prototypes

- Developped 2 different systems for crossdemonstration of stacks and systems at 2 locations
- Unique manufacturer for both systems
- Pre-assessment for CE certification
- 9-month demo at TRL 6(pre-certification) and at TRL7 (quasi-residential)
- System requirements frozen, P&IDs finalized of both systems, RFQs for components out, 3D design complete
- Manufacturing Q1 2024, 9-month Demo 2024-25
- Techno-economic assessment of 5-kW CHP system in 4 markets: NL, PL, UK, IT validated with demo performance data
- LCA assessment. Stakeholder workshop at a demo location –stay tuned!

GICO project WASTE price -33÷100 €/MWh

(-100÷300 €/t, LHV_{wet} 11 MJ/kg=3 MWh/t, **D2.1 BLAZE & D2.1 GICO:** Intermediate solid bioenergy carriers: 15-5 €/MWh SET plan-GICO)

Legislation gaps for the agroindustrialmunicipal coproducts/waste use for H&P&CCUS&Fuel Market gaps for solid bioenergy carries (e.g. biochar for Fuel is not as pellet for Heat)

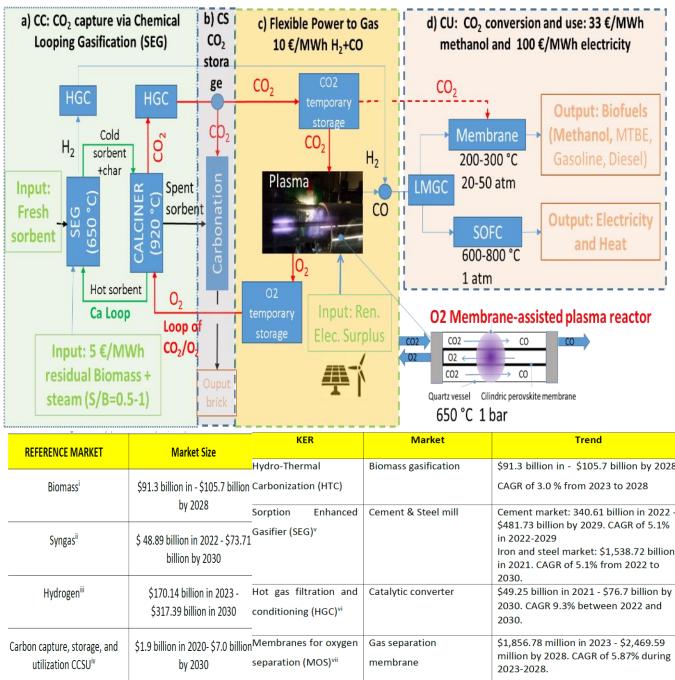
 Gasification -> 5-2 €/MWh (1-0.3 k€/MW_{th}, 10% opex)

 Conditioning -> 5-2 €/MWh (1-0.3 k€/MW_{th}, 10% opex)

 CO₂ capture 90€/t (GICO 40€/t), 50%C_{wt}&50%CO2, <u>5-2</u>

 €/MWh

CO₂ convers.->CO+½O2, 10€/MWh_e, 50% efficiency, <u>5</u> <u>€/MWh</u>


(Intermediate gaseous bioenergy carriers: 30–10 €/MWh

SET plan-GICO)

Gap in legislation for gaseous bioenergy carries Market gaps (e.g. biosyngas is not as H2 in NG grid)

<u>Methanol/biofuel</u> 75 SET plan <u>35</u> GICO <u>€/MWh</u> <u>Bioelectricity</u> 200 actual <u>100</u> GICO <u>€/MWh</u> <u>(SOFC<1000€/kWe?)</u>

Difficulty in use especially in **mix and medium to small scale** (i.e. 2-20 t/day and 500-5,000 kWe, compatible with the standard residual organic waste availability of few thousand tons per year) connected to communities. see public D6.4 GICO deliverable.

University Guglielmo Marconi (USGM)

Enrico Bocci

E-mail: e.bocci@unimarconi.it

The official websites <u>www.blazeproject.eu</u>, <u>www.so-free.eu</u>, <u>www.gicoproject.eu</u>

Platform: www.blazeproject.eu/biocogen-2030/

BLAZE-SO-FREE-GICO social media (Twitter, Linkedin and Facebook):

Blaze (@BlazeProject) Twitter / LinkedIn /Facebook